• UGM
  • IT Center
  • Bahasa Indonesia
    • English
    • Bahasa Indonesia
Universitas Gadjah Mada Universitas Gadjah Mada
Menara Ilmu Matematika Diskrit
  • BERANDA
  • TENTANG
    • OVERVIEW WEBSITE
    • TIM PENGEMBANG
  • Materi
    • LOGIKA MATEMATIKA
    • PEMBUKTIAN MATEMATIKA
    • HIMPUNAN
    • RELASI
    • FUNGSI DISKRIT NUMERIK
    • INDUKSI MATEMATIKA
    • PRINSIP INKLUSI DAN EKSKLUSI
    • PERMUTASI DAN KOMBINASI
    • TEOREMA BINOMIAL
    • PRINSIP SARANG MERPATI
    • ALGORITMA
    • FUNGSI PEMBANGKIT
    • RELASI REKURENSI
    • BILANGAN FIBONACCI
    • POSET
    • LATIS
    • ALJABAR BOOLE
    • PERSAMAAN DIOPHANTINE
    • RING DAN LAPANGAN
    • LAPANGAN GALOIS
    • GEOMETRI BIDANG HINGGA
    • PERSEGI LATIN
    • BALANCED INCOMPLETE BLOCK DESIGN
    • STEINER TRIPLE SYSTEM
    • TEORI BILANGAN DASAR
    • TEORI GRAF
    • POHON
  • Tutorial
    • Rekaman Latihan Soal
    • Tutorial Logika Matematika
    • Tutorial Pembuktian Matematika
    • Tutorial Himpunan
    • Tutorial Relasi
    • Tutorial Fungsi Diskrit Numerik
    • Tutorial Induksi Matematika
    • Tutorial Prinsip Inklusi dan Eksklusi
    • Tutorial Permutasi dan Kombinasi
    • Tutorial Teorema Binomial
    • Tutorial Prinsip Sarang Merpati
    • Tutorial Algoritma
    • Tutorial Fungsi Pembangkit
    • Tutorial Relasi Rekurensi
    • Tutorial Bilangan Fibonacci
    • Tutorial Poset
    • Tutorial Latis
    • Tutorial Aljabar Boole
    • Tutorial Persamaan Diophantine
    • Tutorial Lapangan Hingga
    • Tutorial Lapangan Galois
    • Tutorial Geometri Bidang Hingga
    • Tutorial Persegi Latin
    • Tutorial Balanced Incomplete Block Design
    • Tutorial Steiner Triple System
    • Tutorial Teori Bilangan Dasar
    • Tutorial Teori Graf
    • Tutorial Pohon
  • PENELITIAN TERKAIT
    • TEORI PARTISI
    • TEORI GRAF
    • KRIPTOGRAFI
    • TEORI KODING
    • ALJABAR LINEAR
  • KONTAK KAMI
  • Beranda
  • Tutorial
  • Pembahasan Soal 1 Induksi Matematika

Pembahasan Soal 1 Induksi Matematika

  • Tutorial
  • 22 Agustus 2021, 07.44
  • Oleh: isnainiuha
  • 0

File Tayangan

Soal: Buktikan melalui induksi matematika, untuk setiap bilangan bulat n\geq 1 berlaku \left(n!\leq n^{n}\right).

Pembahasan:

  • Pertama-tama akan ditunjukkan benar untuk n=1.

Diperoleh

    \[1!=1 \leq 1^1 .\]

Jadi, untuk n=1 terbukti benar bahwa n^{n}\leq n!.

  • Diasumsikan benar untuk n=k, berlaku k!\leq k^{k}.
  • Akan ditunjukkan jika n=k benar, maka n=k+1 benar.
    Diperoleh

        \begin{align*} (k+1)! &= (k+1)(k)(k-1)\cdots 3 \times 2 \times 1 \\ &= (k+1)(k!) \\ &\leq (k+1) k^{k} \\ &\leq (k+1) (k+1)^{k} \\ &= (k+1)^{k+1} \end{align*}

    Dengan induksi matematika, terbukti bahwa untuk n\geq 1 berlaku n!\leq n^{n}.

 

Credit: Fadhlan Zhaahiran

 

Leave A Comment Batalkan balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *

*

Artikel Terbaru

  • Pembahasan Soal 7 Induksi Matematika
  • Pembahasan Soal 3 Algoritma
  • Pembahasan Soal 2 Algoritma
  • Pembahasan Soal 1 Algoritma
  • Rekaman Tutorial 2022 oleh Fahreezan Sheeraz Diyaldin

Komentar

  • jiii pada Pembahasan Soal 1 Prinsip Inklusi-Eksklusi
  • jiii pada Pembahasan Soal 1 Prinsip Inklusi-Eksklusi
Universitas Gadjah Mada

Kanal Pengetahuan dan Menara Ilmu

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Gadjah Mada

Sekip Utara BLS 21 Yogyakarta

© Universitas Gadjah Mada

KEBIJAKAN PRIVASI/PRIVACY POLICY

[EN] We use cookies to help our viewer get the best experience on our website. -- [ID] Kami menggunakan cookie untuk membantu pengunjung kami mendapatkan pengalaman terbaik di situs web kami.I Agree / Saya Setuju