• UGM
  • IT Center
  • Bahasa Indonesia
    • English
    • Bahasa Indonesia
Universitas Gadjah Mada Universitas Gadjah Mada
Menara Ilmu Matematika Diskrit
  • BERANDA
  • TENTANG
    • OVERVIEW WEBSITE
    • TIM PENGEMBANG
  • Materi
    • LOGIKA MATEMATIKA
    • PEMBUKTIAN MATEMATIKA
    • HIMPUNAN
    • RELASI
    • FUNGSI DISKRIT NUMERIK
    • INDUKSI MATEMATIKA
    • PRINSIP INKLUSI DAN EKSKLUSI
    • PERMUTASI DAN KOMBINASI
    • TEOREMA BINOMIAL
    • PRINSIP SARANG MERPATI
    • ALGORITMA
    • FUNGSI PEMBANGKIT
    • RELASI REKURENSI
    • BILANGAN FIBONACCI
    • POSET
    • LATIS
    • ALJABAR BOOLE
    • PERSAMAAN DIOPHANTINE
    • RING DAN LAPANGAN
    • LAPANGAN GALOIS
    • GEOMETRI BIDANG HINGGA
    • PERSEGI LATIN
    • BALANCED INCOMPLETE BLOCK DESIGN
    • STEINER TRIPLE SYSTEM
    • TEORI BILANGAN DASAR
    • TEORI GRAF
    • POHON
  • Tutorial
    • Rekaman Latihan Soal
    • Tutorial Logika Matematika
    • Tutorial Pembuktian Matematika
    • Tutorial Himpunan
    • Tutorial Relasi
    • Tutorial Fungsi Diskrit Numerik
    • Tutorial Induksi Matematika
    • Tutorial Prinsip Inklusi dan Eksklusi
    • Tutorial Permutasi dan Kombinasi
    • Tutorial Teorema Binomial
    • Tutorial Prinsip Sarang Merpati
    • Tutorial Algoritma
    • Tutorial Fungsi Pembangkit
    • Tutorial Relasi Rekurensi
    • Tutorial Bilangan Fibonacci
    • Tutorial Poset
    • Tutorial Latis
    • Tutorial Aljabar Boole
    • Tutorial Persamaan Diophantine
    • Tutorial Lapangan Hingga
    • Tutorial Lapangan Galois
    • Tutorial Geometri Bidang Hingga
    • Tutorial Persegi Latin
    • Tutorial Balanced Incomplete Block Design
    • Tutorial Steiner Triple System
    • Tutorial Teori Bilangan Dasar
    • Tutorial Teori Graf
    • Tutorial Pohon
  • PENELITIAN TERKAIT
    • TEORI PARTISI
    • TEORI GRAF
    • KRIPTOGRAFI
    • TEORI KODING
    • ALJABAR LINEAR
  • KONTAK KAMI
  • Beranda
  • OVERVIEW WEBSITE

OVERVIEW WEBSITE

  • 29 Juni 2021, 14.25
  • Oleh: isnainiuha
  • 0

Selamat datang di website Menara Ilmu: Matemaitka Diskrit. Website Menara Ilmu Matematika Diskrit merupakan pendukung Kanal Pengetahuan FMIPA UGM (sciencex.mipa.ugm.ac.id). Pengembangan website Menara Ilmu ini merupakan program PIKA UGM (Pusat Inovasi dan Kajian Akademika UGM) yang dilaksanakan dan dikelola oleh tim dari Departemen Matematika, FMIPA UGM. Website ini dapat dimanfaatkan oleh masyarakat luas, baik dari kalangan akademisi dan juga dari kalangan praktisi yang menggunakan matematika.

Matematika merupakan suatu ilmu dasar yang mendasari berbagai ilmu, dan bahkan matematika juga dapat didefinisikan sebagai suatu bahasa. Bagi siapapun, khususnya orang-orang yang bekerja di bidang sains dan teknologi, tidak akan mungkin dapat ‘berbicara’ mengenai teori-teori yang dikerjakannya kecuali teori-teori tersebut mereka bahasakan menggunakan matematika. Salah satu cabang ilmu di matematika yang cukup penting adalah matematika diskrit. Sebagai contoh, hampir semua hal terkait komputasi dan komputer dibangun dengan fondasi matematika diskrit. Aritmetika pada komputer menggunakan representasi biner yang bersifat diskrit. Dari operasi pada bilangan biner ini dibangun segala macam hal dalam ilmu komputer. Contoh lain, di bidang kriptografi atau penyandian data (banyak menggunakan teori bilangan bulat yang jelas bersifat diskrit). Oleh karena itu tentunya media untuk belajar matematika diskrit akan sangat bermanfaat khususnya untuk mahasiswa.

Matematika diskrit adalah cabang matematika yang membahas objek-objek matematika yang bersifat diskrit. Diskrit artinya terpisah-pisah secara individu. Objek yang bersifat diskrit dapat dicacah satu per satu. Jika kita memiliki jari tangan yang banyaknya takhingga, maka banyaknya anggota dari himpunan objek yang bersifat diskrit dapat kita hitung satu per satu dengan menggunakan jari-jari tangan kita tersebut sedemikian hingga setiap objeknya tercacah tepat satu kali. Teori ini merupakan teori yang mempunyai peranan penting dalam kehidupan sehari hari. Di Indonesia, matematika diskrit sudah dikenalkan sejak pendidikan dasar (SD), yakni siswa sudah diajarkan kaidah pencacahan yang merupakan bagian dari matematika diskrit.

Di kehidupan nyata terdapat banyak contoh dari objek-objek yang bersifat diskrit. Beberapa contoh paling dekat dengan kehidupan sehari-hari adalah bilangan bulat, bilangan natural, alfabet latin dan graf. Banyak juga objek-objek di dunia nyata yang dapat dipandang sebagai objek diskrit, misalnya manusia yang tinggal di Indonesia, banyak satwa liar yang ada di suatu kebun binatang, mobil-mobil yang berlalu lalang di jalan Jogja-Solo atau nada-nada tunggal yang dapat dihasilkan oleh sebuah piano.

Sebagai kontribusi bagi pendidikan di Indonesia, khususnya bidang Matematika Diskrit, ada baiknya metode pembelajaran tersebut dan juga hasil-hasil penelitian di area ini disebarluaskan secara meluas kepada publik sehingga dapat dimanfaatkan oleh mahasiswa, dosen, dan juga praktisi di Indonesia yang sedang mempelajari matematika diskrit. Pemanfaatan teknologi informasi berupa website merupakan hal yang sesuai untuk menyebarluaskan ilmu ini kepada masyarakat Indonesia secara luas.

Materi belajar telah disusun secara urut dan sistematis, yang dapat dilihat melalui menu utama website ini. Selamat belajar, dan terima kasih atas kunjungannya ke Website Menara Ilmu Matematika Diskrit.

Artikel Terbaru

  • Pembahasan Soal 7 Induksi Matematika
  • Pembahasan Soal 3 Algoritma
  • Pembahasan Soal 2 Algoritma
  • Pembahasan Soal 1 Algoritma
  • Rekaman Tutorial 2022 oleh Fahreezan Sheeraz Diyaldin

Komentar

  • jiii pada Pembahasan Soal 1 Prinsip Inklusi-Eksklusi
  • jiii pada Pembahasan Soal 1 Prinsip Inklusi-Eksklusi
Universitas Gadjah Mada

Kanal Pengetahuan dan Menara Ilmu

Fakultas Matematika dan Ilmu Pengetahuan Alam

Universitas Gadjah Mada

Sekip Utara BLS 21 Yogyakarta

© Universitas Gadjah Mada

KEBIJAKAN PRIVASI/PRIVACY POLICY

[EN] We use cookies to help our viewer get the best experience on our website. -- [ID] Kami menggunakan cookie untuk membantu pengunjung kami mendapatkan pengalaman terbaik di situs web kami.I Agree / Saya Setuju